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Considering a quantized chaotic system, we analyze the evolution of its eigenstates as a result of varying a
control parameter. As the induced perturbation becomes larger, there is a crossover from a perturbative to a
nonperturbative regime, which is reflected in the structural changes of the local density of states. The full
scenario is explored for a physical system: an Aharonov-Bohm cylindrical billiard. As we vary the magnetic
flux, we discover an intermediate twilight regime where perturbative and semiclassical features coexist. This is
in contrast with the simple crossover from a Lorentzian to a semicircle line shape which is found in random-
matrix models.
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The analysis of the evolution of eigenvalues and of the
structural changes that the corresponding eigenstates of a
chaotic system exhibit as one varies a parameter � of the
Hamiltonian H��� has sparked a great deal of research ac-
tivity for many years. Physically the change of � may rep-
resent the effect of some externally controlled field �like
electric field, magnetic flux, gate voltage� or a change of an
effective interaction �as in molecular dynamics�. Thus, these
studies are relevant for diverse areas of physics ranging from
nuclear �1,2� and atomic physics �3,4� to quantum chaos
�5–8� and mesoscopics �9,10�.

Up to now the majority of this research activity was fo-
cused on the study of eigenvalues, where a good understand-
ing has been achieved, while much less is known about
eigenstates. The pioneering work in this field has been done
by Wigner �2�, who studied the parametric evolution of
eigenstates of a simplified random-matrix theory �RMT�
model of the type H=E+�B. The elements of the diagonal
matrix E are the ordered energies �En�, with mean level spac-
ing �, while B is a banded random matrix. Wigner found
that as the parameter � increases the eigenstates undergo a
transition from a perturbative Lorentzian-type line shape to a
nonperturbative semicircle line shape.

For many years the study of parametric evolution for ca-
nonically quantized systems was restricted to the exploration
of the crossover from integrability to chaos �7,8�. Only later
�6� was it realized that a theory is lacking for systems that are
chaotic to begin with. Inspired by Wigner theory, the natural
prediction was that the local density of states �LDOS� should
exhibit a crossover from a regime where a perturbative treat-
ment is applicable to a regime where semiclassical approxi-
mation is valid. However, despite a considerable amount of
numerical efforts �6�, there was no clear-cut demonstration of
this crossover, neither has a theory been developed describ-
ing how the transition from the perturbative to the nonper-
turbative regime takes place.

It is the purpose of this Brief Report to present a complete
scenario of parametric evolution in case of a physical system
that exhibits hard chaos. We explore the validity of pertur-
bation theory and semiclassics, and we discover the appear-
ance of an intermediate regime �“twilight zone”� where both
perturbative and semiclassical features coexist. Without loss

of generality we consider as an example a billiard system
whose classical dynamics is characterized by a correlation
time �cl, which is simply the ballistic time. Associated with
�cl is the energy scale � /�cl. Next we look at a similar bil-
liard, but with a rough boundary. This roughness is charac-
terized by a length scale which is � times smaller; hence, we
can associate with it an energy scale �ENU= �� /�cl��. The
roughness does not affect the chaoticity: the correlation time
�cl as well as the whole power spectrum are barely affected.
Consequently we explain that �ENU is not reflected in the
RMT modeling of the Hamiltonian. Still in the LDOS analy-
sis we find that nonuniversal �system-specific� features ap-
pear. The appearance of such features is a generic phenom-
enon in quantum chaos studies. It introduces an ingredient in
the theory of parametric evolution which goes beyond RMT.

The model that we will use in our analysis is a particle
confined to an Aharonov-Bohm �AB� cylindrical billiard �see
Fig. 1� where one can control the magnetic flux �. The cy-
lindrical billiard is constructed by wrapping a two-
dimensional �2D� billiard with hard-wall boundaries. The
lower boundary at y=0 is flat, while the upper boundary y
=Ly +W��x� is deformed. The deformation is described by
��x�=	n=1

� Ancos�nx� where An are random numbers in the
range �−1,1�. The illustration in Fig. 1 assumes a smooth
boundary ��=1�. The Hamiltonian of a particle in the cylin-
drical AB billiard is

H��� =
1

2m
��px −

e

Lx
�	2

+ py
2
 �1�

supplemented by Lx periodic boundary conditions in the
horizontal direction and hard-wall boundary conditions along
the lower and upper boundaries. px and py are the momenta.
Later we shall use the notation �=e� /�. We consider the
chaotic H��=0� as the unperturbed Hamiltonian.

After conformal transformation �7� the billiard is mapped
into a rectangular, with a mass tensor which is space depen-
dent. Then it is possible to compute the matrix representation
of the Hamiltonian in the plane-wave basis �
�� of the rect-
angular. The result is
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The classical dimensionless parameters of the model are the
aspect ratio 
=Ly /Lx, the tilt relative amplitude �=W /Ly,
and the roughness parameter �. Upon quantization we have
�, which together with m and E determines the de Broglie
wavelength of the particle and, hence, leads to an additional
dimensionless parameter nE= �LxLy / �2��2��mE. For 2D bil-
liards the mean level spacing � is constant, and hence nE
=E /��1/�2 can be interpreted as either the scaled energy or
as the level index. Optionally we define a semiclassical pa-
rameter �scaled=1/�nE.

In the numerical study we have taken �=0.06 and 
=1,
for which the classical dynamics is completely chaotic �for
any ��. We consider either �=1 for a smooth boundary or
�=100 for a rough boundary. The eigenstates �n���� of the
Hamiltonian H��� were found numerically for various val-
ues of the flux �0.0006���60�. We were interested in the
states within an energy window �E�45 that contains �nE
�200 levels around the energy E�400. Note that the size of
the energy window is classically small ��E�E�, but quan-
tum mechanically large ��E���.

The object of our interest is the overlaps of the eigenstates
�n���� with a given eigenstate �m�0�� of the unperturbed
Hamiltonian:

P�n�m� = ��n����m�0���2 =� dxdydpxdpy

�2���2 ��n���m�. �3�

The overlaps P�n�m� can be regarded as a distribution with
respect to n. Up to some trivial scaling it is essentially the
LDOS. The associated dispersion is defined as �E
= �	P�n�m��En−Em�2�1/2. In practice we plot P�n�m� as a
function of r=n−m or as a function of �En−Em� and average

over the reference state m. The second equality in Eq. �3� is
useful for the semiclassical analysis. It involves the Wigner
functions ��n��x ,y , px , py� which are associated with the
eigenstates �n����. The semiclassical approximation is based
on the microcanonical approximation ��n���(En
−H�x ,y , px , py�). With this approximation the integral can be
calculated analytically, leading to

Pcl�n�m� =
�

��2��Ecl�2 − ��En − Em� − �Ecl
2 /�2Em��2

, �4�

where �Ecl= ��vE /Lx�� with vE= �2E /m�1/2. It is implicit in
Eq. �4� that Pcl�n�m�=0 outside of the allowed range, which
is where the expression under the square root is negative: For
large �En−Em� there is no intersection of the corresponding
energy surfaces and, hence, no classical overlap.

A few words are in order regarding the quantum to clas-
sical correspondence �QCC�. Whenever P�n�m�� Pcl�n�m�
we call it a “detailed QCC,” while �E��Ecl is referred to as
a “restricted QCC” �6�. It is remarkable that the �robust�
restricted QCC holds even if the �fragile� detailed QCC fails
completely. We have verified that also in the present system
�E is numerically indistinguishable from �Ecl.

A fixed assumption of this work is that � is classically
small. But quantum mechanically it can be either “small” or
“large.” Quantum mechanically small � means that pertur-
bation theory does provide a valid approximation for P�n�m�.
What is the border between the perturbative regime and non-
perturbative regime, we discuss later. First we would like to
show that the prediction which is based on perturbation
theory, to be denoted as Pprt�n�m�, is very different from the
semiclassical approximation.

In order to write the expression for Pprt�n�m� we have first
to clarify how to apply perturbation theory in the context of
the present model. To this end, we write the perturbed
Hamiltonian H��� in the basis of H��=0�. Since we assume
that the perturbation is classically small, it follows that we
can linearize the Hamiltonian with respect to �. Conse-
quently the perturbed Hamiltonian is written as H=E+�B,
where E=diag�En� is a diagonal matrix, while B
= �−�� /e�Inm�. The current operator is conventionally de-
fined as

I � − �H/�� = �e/�mLx��px.

Its matrix elements can be found using a semiclassical recipe

�11�: namely, �Inm�2��� / �2����C̃(�En−Em� /�), where C̃���
is the Fourier transform of the current-current correlation
function C���. Conventional condensed-matter calculations
are done for disordered rings where one assumes C��� to be
exponential, with time constant �cl which is essentially the

ballistic time. Hence C̃����1/ ��2+ �1/�cl�2� is a Lorentzian.
This Lorentzian approximation works well also for the cha-
otic ring that we consider. In fact we can do better by ex-
ploiting a relation between I�t� and the force F�t�=−ṗx,

leading to C̃���= �e / �mLx��2C̃F��� /�2. The force F�t� is a
train of spikes corresponding to collisions with the bound-
aries. Assuming that the collisions are uncorrelated on short

times we have C̃F�����8/3��m2vE
3 /Ly, for �� �1/�cl�.

This is known as the “white noise” approximation �12�. We

FIG. 1. Left: two-dimensional billiard with �=1. Right: corre-
sponding Aharonov-Bohm cylinder.
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have checked the validity of this approximation in the

present context by a direct numerical evaluation of C̃��� and
also verified the validity of the above recipe by direct evalu-
ation of the matrix elements of B via Eq. �2�; see Fig. 2�a�.
The classical C̃��� was numerically evaluated by Fourier
analysis of the fluctuating current I�t� for a very long ergodic
trajectory that covers densely the whole energy surface
H�0�=E.

Perturbation theory to infinite order with the Hamiltonian
H=E+�B leads to a Lorentzian-type approximation for the
LDOS �2� �see also Sec. 18 of �6�c���. It is an approximation
because all the higher orders are treated within a Markovian-
like approach �by iterating the first-order result� and conver-
gence of the expansion is preassumed, leading to Pprt�n�m�
=�2�Bnm�2 / ��2+ �En−Em�2�. In practice the parameter ����
can be determined �for a given �� by imposing the require-
ment of having Pprt�r� normalized to unity. Substituting the
expression for the matrix elements we get

Pprt�n�m� =
8�2��vE�3/�3�mLy

2Lx
3�

�En − Em�2 + ��/�cl�2

�2

�En − Em�2 + �2 . �5�

By comparing the exact P�r� to the approximation, Eq. �5�,
we can determine the regime ���prt for which the approxi-
mation P�r�� Pprt�r� makes sense. The practical procedure
to determine �prt is to plot �Eprt and to see where it departs
from �Ecl. The latter is a linear function of � while the
former becomes sublinear for large enough � �and even
would exhibit saturation if we had a finite bandwidth�. In
case of Eq. �5� this reasoning leads to a crossover when
�Ecl����� /�cl. Hence we get that the border of the pertur-
bative regime1 is �prt=Lx / �vE�cl��1.

What happens to P�r� in practice? If we take the Wigner
RMT model as an inspiration, we expect to have at �
��prt a simple crossover from a Pprt line shape to a Pcl line
shape. The latter is regarded as the semiclassical analog of
the �artificial� semicircle line shape. Indeed for the smooth
billiard ��=1� we have verified that this naive expectation is

realized �13�. But for the rough billiard ��=100� we witness
a more complicated scenario. In Figs. 2�b� and 2�c� we show
the LDOS for ���prt, where it �still� agrees quite well with
Pprt. In Fig. 3 we show the LDOS for ���prt, where we
would naively expect agreement with Pcl. Rather we witness
a three-peak structure, where the r�0 peak is of perturbative
nature, while the others are the fingerprint of semiclassics.
For sake of comparison we show the corresponding results
for a smooth billiard ��=1� and otherwise the same param-
eters. There we have detailed the QCC as is naively ex-
pected. The coexistence of perturbative and semiclassical
features persists within an intermediate regime of � values,
to which we refer as the “twilight zone.”

Before we adopt a phase-space picture in order to explain
the above observations, we would like to verify that indeed
random-matrix modeling does not lead to a similar effect:
After all the standard Wigner model, which gives rise to a
simple crossover from a Lorentzian to a semicircle line
shape, assumes a simple banded matrix, which is not the case
in our model. As argued above the matrix elements of B
decay as 1/ �n−m�2 from the diagonal. This implies that
Pprt�r� is in fact not a Lorentzian and also may imply that the
crossover to the nonperturbative regime is more complicated.
In order to resolve this subtlety we have taken a randomized
version of the Hamiltonian H=E+�B. Namely, we have
randomized the signs of the off-diagonal elements of the B
matrix. Thus we get an RMT model with the same band
profile as in the physical model. This means that Pprt is the
same for both models �the physical and the randomized�, but
still they can differ in the nonperturbative regime. Indeed,
looking at the LDOS of the randomized model we observe
that the semiclassical features are absent: PRMT�r� unlike
P�r� exhibits a simple crossover from perturbative to nonper-
turbative line shape.

1Optionally �prt is determined by ������ /�cl. It should be dis-
tinguished from the border of the first-order perturbative regime
which is determined by ������, leading to �FOPT��prt /�b,
where b= �� /�cl� /��1. In other words, �FOPT is the perturbation
which is needed to mix neighboring levels.

FIG. 2. �Color online� �a� The classical power spectrum C��� plotted �as green/gray curves� together with the quantum mechanical band
profile �the dark curve� �2�e2 /����Bnm�2 for �=1 and �scaled�0.018. �b� The LDOS kernel P�n�m� in the perturbative regime for a billiard
with �=100 and perturbation �=2.7. �c� Same as �b� but zoomed-in normal scale. The width of the nonperturbative component is � /�
=36. Note that in this regime the variance �E /��58 is still dominated by the �perturbative� tails. For comparison we display the calculated
Pprt, Pcl, and PRMT.

FIG. 3. �Color online� �a� The LDOS kernel P�n�m� for �
=31.4, where �=100. �b� The same parameters but �=1. In panel
�a� we observe coexistence of perturbative and SC structures while
in panel �b� we witness detailed QCC.
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In what follows we would like to argue that the structure
of P�r�, both perturbative and nonperturbative components,
can be explained using a phase-space picture. �For phrasing
purposes we find the “Wigner function language” most con-
venient; still the reader should notice that we do not need or
use this representation in practice.� We recall that the P�n�m�
is determined by the overlap of two Wigner functions. In the
present context the Wigner functions ��n� are supported by
shifted circles �px− �� /2���2+ py

2=2mEn. We are looking for
their overlap with a reference Wigner function which is sup-
ported by the circle px

2+ py
2=2mEm. The question is whether

the overlaps of the Wigner functions ��n� and ��m� can be
approximated by a classical calculation and under what cir-
cumstances we need perturbation theory.

Generically the Wigner function has a transverse Airy-
type structure. If the “thickness” of the Wigner function is
much smaller compared with the separation �En−Em� of the
energy surfaces, then we can trust the semiclassical approxi-
mation. This will always be the case if � is small enough or,
equivalently, if we can make � large enough. In such case
the dominant contribution comes from the intersection of the
energy surfaces, which is the phase-space analog of the
stationary-phase approximation. The other extreme is the
case where the “thickness” of Wigner function is larger com-
pared with the separation of the energy surfaces �namely,
�Ecl����� /�cl�. Then the contribution to the overlap comes
“collectively” from all the regions of the Wigner �quasi�dis-
tribution, not just from the intersections. In such case we
expect perturbation theory to work.

The above reasoning assumes that the wave function is
concentrated in an ergodiclike fashion in the vicinity of the
energy surface. This is known as the “Berry conjecture” �13�.
In case of billiards it implies that the wave function looks
like a random superposition of plane waves with �p�
= �2mE�1/2. We find �see Fig. 4� that this does not hold in
case of a rough billiard �unless � were extremely small, so as
to make the de Broglie wavelength very short�. Namely, in
the case of a rough billiard there are eigenstates that have a
lot of weight in the region �p�� �2mE�1/2. Consequently
there are both semiclassical and nonsemiclassical overlaps.
Specifically, if we have nonsemiclassical wave functions and

�En−Em��0, then the collective contribution dominates,
which gives rise to the perturbativelike peak in the LDOS.

Our findings apply to systems, such as the rough billiard,
where there is an additional �large� nonuniversal energy
scale �ENU. This is defined as an energy scale which is not
related to the band profile and, hence, does not emerge in the
RMT modeling. Hence in general there is a distinct twilight
regime � /�cl��Ecl�����ENU, which is neither “perturba-
tive” nor “semiclassical.” �In our numerics �=100 is so large
that �ENU�E.�

We have analyzed the parametric evolution of the eigen-
states of an Aharonov-Bohm cylindrical billiard, as the flux
is changed. The full crossover from the perturbative to the
nonperturbative regime is demonstrated. Random-matrix
theory suggests a simple crossover. Instead, we discover an
intermediate twilight regime where perturbative and semi-
classical features coexist. This can be understood by adopt-
ing a phase-space picture and taking into account the
inapplicability of the Berry conjecture regarding the semi-
classical structure of the wave functions.
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